Media of University of Babylon - كلية الطب

Software Department Discusses Ph.D. Dissertation on Developing a Medical Visual Question Answering System Using Deep Learning Techniques

Duhaa Fadill Abbas
As part of its continuous academic activities, the Department of Software at the College of Information Technology – University of Babylon hosted the defense of a Ph.D. dissertation presented by Nada Fadel Mohammed Yaseen, entitled “Medical Visual Question Answering Based on Deep Learning Using Multi-Modal Attention and Grad-CAM Techniques.” The dissertation was supervised by Prof. Israa Hadi Ali and was examined on Sunday, September 14, 2025, in the College Conference Hall.

The dissertation aimed to design an intelligent Medical Visual Question Answering (VQA) system utilizing advanced deep learning approaches. The proposed system processes medical images alongside natural-language clinical questions to generate precise answers that support physicians in clinical decision-making, providing a reliable “second opinion” that enhances confidence and offers valuable assistance to end-users.

On the technical level, the researcher employed a CNN Denoising Autoencoder model to extract visual features from medical images by dividing them into overlapping patches, thereby improving the accuracy of detecting abnormalities. For textual feature extraction, a BiLSTM model enhanced with BioWordVec medical embeddings was implemented to process clinical questions, coupled with an Attention Mechanism to refine contextual understanding. Additionally, the study incorporated BioBERT, a specialized biomedical language model, to achieve more efficient question representation and to handle complex and rare medical terminology with high precision.

The dissertation concluded that it is possible to develop a comprehensive medical VQA system that integrates computer vision and natural language processing techniques to provide innovative and practical solutions. Such a system holds significant potential in improving diagnostic accuracy and strengthening clinical decision support within healthcare institutions.

تاسماء اعضاء لجنة المناقشةاللقب العلميالاختصاص الدقيقمكان العملالمنصب
1د. نبيل هاشم كاغداستاذ متمرسذكاء اصطناعيجامعة بابل / كلية تكنولوجيا المعلوماترئيساً
2د. هدى ناجي نوافاستاذانظمة توصية و شبكات التواصل الاجتماعيجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
3د. اسعد نوري هاشماستاذمعالجة الصور و ذكاء اصطناعيجامعة الكوفة / كلية علوم الحاسوب و الرياضياتعضوا
4د. علي هادي حسناستاذ مساعدذكاء اصطناعيجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
5د.مي عبد المنعم صالحاستاذامنية بيانات و وسائط متعددةجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
6د.اسراء هادي علياستاذوسائط متعددة و تنقيب بياناتجامعة بابل / كلية تكنولوجيا المعلوماتعضوا و مشرفا

photo:

Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب