Media of University of Babylon - كلية الطب

Ph.D. Dissertation at the College of Information Technology Explores Land Cover Classification of Satellite SAR Imagery Using Deep Learning Techniques

Duhaa Fadill Abbas
The Department of Software at the College of Information Technology, University of Babylon, witnessed on Thursday, September 11, 2025, the public defense of a Ph.D. dissertation presented by researcher Safaa Hadi Khudair Abis, entitled “Land Cover Classification of Synthetic Aperture Radar (SAR) Satellite Images Using Machine Learning.” The dissertation was supervised by Prof. Dr. Hidhab Khalid Abis and held in the College Conference Hall.

The research addressed the vital topic of land cover classification, which constitutes a fundamental aspect of remote sensing. Accurate classification provides critical data that supports diverse applications, including environmental monitoring, climate change assessment, urban planning, and natural disaster management. The dissertation emphasized that achieving high precision in classification is essential to maximize the benefits of these applications, particularly with the rapid advancement of deep learning techniques that have emerged as transformative tools in recent years.

The study aimed to develop an integrated model based on Sentinel-1 (SAR) and Sentinel-2 (Optical) satellite imagery. A novel strategy was proposed to enhance and expand training samples through the application of zonal statistics, which significantly increased the number of usable training samples from 300 to more than 11,400 pure pixels. This methodological innovation contributed to improving the accuracy and robustness of the classification process.

The dissertation introduced three advanced models. The first relied on spatial data using the U-Net architecture and achieved an accuracy rate of 97%. The second model, based on temporal data, employed the Long Short-Term Memory (LSTM) approach, processing seasonal time-series data across four periods, and likewise attained an accuracy of 97%. The third model integrated both spatial and temporal features through an attention-based fusion mechanism, which enabled the selection and combination of the most informative features. This hybrid spatio-temporal model demonstrated superior performance, achieving an overall accuracy of 99.52% and a Kappa coefficient of 98.97%.

The results of the dissertation highlighted that the proposed model represents a significant advancement in the field of land cover classification, offering a high degree of precision and reliability. Such an approach provides a promising foundation for supporting scientific research and practical applications in remote sensing, while also contributing to future projects in environmental planning, natural resource management, and sustainable development.

تاسماء اعضاء لجنة المناقشةاللقب العلميالاختصاص الدقيقمكان العملالمنصب
1د. مهدي نصيف جاسماستاذتنقيب بياناتجامعة تكنولوجيا المعلومات و الاتصالاترئيساً
2د. وفاء محمد سعيداستاذذكاء اصطناعي معالجة صوريةجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
3د. احمد خلفة عبيداستاذ مساعدذكاء اصطناعي و انظمة معلوماتجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
4د. احمد حبيب سعيداستاذ مساعدنظم معلومات و شبكاتجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
5د.صفا سعد عباساستاذ مساعدوسائط متعددة و امنية المعلوماتجامعة بابل / كلية تكنولوجيا المعلوماتعضوا
6د. هضاب حالد عبيساستاذذكاء اصطناعيجامعة بابلعضوا و مشرفا

photo:

Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب
Media of University of Babylon - كلية الطب